retour à l'accueil nouvelle fenêtre vers www.appa.asso.fr Pollution atmosphérique, climat, santé, société

Lus pour vous

Articles sélectionnés pour vous

Yvon Le Moullec

[Version imprimable]

Texte intégral

Sources extérieures

Bertrand A, Stefenelli G, Bruns EA et al., 2017 : Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmos Environ, 169, p. 65‑79.

Garland C, Delapena S, Prasad R et al., 2017 : Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations. Atmos Environ, 169, p. 140‑149.

Hama SM, Cordell RL, Monks PS, 2017 : Quantifying primary and secondary source contributions to ultrafine particles in the UK urban background. Atmos Environ, 166, p. 62‑78.

Louis C, Liu Y, Martinet S et al., 2017 : Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles. Atmos Environ, 169, p. 80‑88.

Mendoza-Villafuerte P, Suarez-Bertoa R, Giechaskiel B et al., 2017 : NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. SciTotEnviron,609, p. 546‑555.

Nopmongcol U, Alvarez Y, Jung J et al., 2017 : Source contributions to United States ozone and particulate matter over five decades from 1970 to 2020. Atmos Environ, 167, p. 116‑128.

Vouitsis I, Ntziachristos L, Samaras C, Samaras Z, 2017 : Particulate mass and number emission factors for road vehicles based on literature data and relevant gap filling methods. Atmos Environ, 168, p. 75‑89.

Qualité de l’air Intérieur

Chan WR, Logue JM, Wu X et al., 2018 : Quantifying fine particle emission events from time-resolved measurements: Method description and application to 18 California low-income apartments. Indoor Air, 28(1), p. 89‑101.

Dodson RE, Udesky JO, Colton MD et al., 2017 : Chemical exposures in recently renovated low-income housing: Influence of building materials and occupant activities. Environ Int, 109, p. 114‑27.

Gaspar FW, Maddalena R, Williams J et al., 2018 : Ultrafine, fine, and black carbon particle concentrations in California child-care facilities. Indoor Air, 28(1), p. 102-111.

Hwang SH, Park WM, Park JB, Nam T, 2017 : Characteristics of PM10 and CO2 concentrations on 100 underground subway station platforms in 2014 and 2015. Atmos Environ, 167, p. 143‑149.

Malliari E, Kalantzi OI, 2017 : Children’s exposure to brominated flame retardants in indoor environments - A review. Environ Int, 108, p. 146‑169.

Morawska L, Ayoko GA, Bae GN et al., 2017 : Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ Int, 108, p. 75‑83.

Pelletier M, Bonvallot N, Ramalho O et al., 2017 : Indoor residential exposure to semivolatile organic compounds in France. Environ Int, 109, p. 81‑88.

Valkonen M, Täubel M, Pekkanen J et al., 2018 : Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort. Indoor Air, 28(1), p. 16‑27.

Xu B, Hao J. Air quality inside subway metro indoor environment worldwide: A review. Environ Int, 107, p. 33‑46.

Immissions- expositions

Chazette P, Totems J, Shang X, 2017 : Atmospheric aerosol variability above the Paris Area during the 2015 heat wave - Comparison with the 2003 and 2006 heat waves. Atmos Environ, 170, p. 216‑33.

Degraeuwe B, Thunis P, Clappier A et al., 2017 : Impact of passenger car NOX emissions on urban NOpollution – Scenario analysis for 8 European cities. Atmos Environ, 171, p. 330‑7.

Fauser P, Ketzel M, Becker T et al., 2017 : Human exposure to carcinogens in ambient air in Denmark, Finland and Sweden. Atmos Environ, 167, p. 283‑297.

Ham W, Vijayan A, Schulte N, Herner JD, 2017 : Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos Environ, 167, p. 335‑45.

Kecorius S, Madueño L, Vallar E et al., 2017 : Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines. Atmos Environ, 170, p. 169‑183.

Leavey A, Reed N, Patel S et al., 2017 : Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios. Atmos Environ, 166, p. 130‑141.

Patrón D, Lyamani H, Titos G et al., 2017 : Monumental heritage exposure to urban black carbon pollution. Atmos Environ, 170, p. 22‑32.

Rai AC, Kumar P, Pilla F et al., 2017 : End-user perspective of low-cost sensors for outdoor air pollution monitoring. SciTotEnviron, 607-608, p. 691‑705.

SimonMC, Hudda N, NaumovaEN, et al., 2017 : Comparisons of traffic-related ultrafine particle number concentrations measured in two urban areas by central, residential, and mobile monitoring. Atmos Environ, 169, p. 113‑127.

Soulhac L, Nguyen CV, Volta P, Salizzoni P, 2017 : The model SIRANE for atmospheric urban pollutant dispersion. PART III : Validation against NO2 yearly concentration measurements in a large urban agglomeration. Atmos Environ, 167, p. 377‑388.

Tan SH, RothM, Velasco E, 2017 : Particle exposure and inhaled dose during commuting in Singapore. Atmos Environ, 170, p. 245‑258.

Thouron L, Seigneur C, Kim Y et al., 2017 : Simulation of trace metals and PAH atmospheric pollution over Greater Paris : Concentrations and deposition on urban surfaces. Atmos Environ, 167, p. 360‑376.

Santé

Achilleos S, Kioumourtzoglou MA, Wu CD et al., 2017 : Acute effects of fine particulate matter constituents on mortality : A systematic review and meta-regression analysis. Environ Int, 109, p. 89‑100. (review)

Barry M, Annesi-Maesano I, 2017 : Ten principles for climate, environment and respiratory health. Eur Respir J, 50(6) : 1701912, https://doi.org/10.1183/13993003.01912‑2017

Carles C, Bouvier G, Esquirol Y et al., 2017 : Residential proximity to agricultural land and risk of brain tumor in the general population. Environ Res, 159, p. 321‑330.

Chen H, Kwong JC, Copes R et al., 2017 : Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ Int, 108, p. 271‑277.

Cory-Slechta DA, Allen JL, Conrad K et al., 2017 : Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology; in press https://doi.org/10.1016/j.neuro.2017.12.003

Forns J, Dadvand P, Esnaola M et al., 2017 : Longitudinal association between air pollution exposure at school and cognitive development in school children over a period of 3.5 years. Environ Res, 159, p. 416‑421

Goldberg MS, Labrèche F, Weichenthal S et al., 2017 : The association between the incidence of postmenopausal breast cancer and concentrations at street-level of nitrogen dioxide and ultrafine particles. Environ Res, 158, p. 7‑15.

Hehua Z, Qing C, Shanyan G et al., 2017 : The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ Res, 159, p. 519‑530.

Hellack B, Sugiri D, Schins RP et al., 2017 : Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus. Atmos Environ, 171, p. 181‑190.

Klocke C, Allen JL, Sobolewski M et al., 2017 : Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination. Neurotoxicology, in press. https://doi.org/10.1016/j.neuro.2017.10.004

Lubczynska J, Sunyer J, Tiemeier H et al., 2017 : Exposure to elemental composition of outdoor PM2.5 at birth and cognitive and psychomotor function in childhood in four European birth cohorts. Environ Int, 109, p. 170‑180.

Luben TJ, Nichols JL, Dutton SJ et al., 2017 : A systematic review of cardiovascular emergency department visits, hospital admissions and mortality associated with ambient black carbon. Environ Int, 107, p. 154‑162.

Ouidir M, Lepeule J, Siroux V et al., 2017 : Is atmospheric pollution exposure during pregnancy associated with individual and contextual characteristics? A nationwide study in France. J Epidemiol Community Health, 71(10), p. 1026‑1036.

Palacios N, Munger KL, Fitzgerald KC et al., 2017 : Exposure to particulate matter air pollution and risk of multiple sclerosis in two large cohorts of US nurses. Environ Int, 109, p. 64‑72.

Pedersen M, Garne E, Hansen-Nord N et al., 2017 : Exposure to air pollution and noise from road traffic and risk of congenital anomalies in the Danish National Birth Cohort. Environ Res, 159, p. 39‑45.

Pedersen M, Olsen SF, Halldorsson TI et al., 2017 : Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: A cohort study. Environ Int, 108, 253‑260.

Pelletier M, Bonvallot N, Glorennec P, 2017 : Aggregating exposures & cumulating risk for semivolatile organic compounds: A review. Environ Res, 158, p. 649‑659.

Plusquin M, Guida F, Polidoro S et al., 2017 : DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environ Int, 108, p. 127‑136.

Rosa MJ, Pajak A, Just AC et al., 2017 : Prenatal exposure to PM2.5 and birth weight: A pooled analysis from three North American longitudinal pregnancy cohort studies. Environ Int, 107, p. 173‑180.

Shmuel S, White AJ, Sandler DP, 2017 : Residential exposure to vehicular traffic-related air pollution during childhood and breast cancer risk. Environ Res, 159, p. 257‑263.

Sinharay R, Gong J, Barratt B et al., 2017 : Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. The Lancet, In press.

Soppa VJ, Schins RP, Hennig F et al., 2017 : Arterial blood pressure responses to short-term exposure to fine and ultrafine particles from indoor sources – A randomized sham-controlled exposure study of healthy volunteers. Environ Res, 158, p. 225‑232.

Sorensen M, Nielsen OW, Sajadieh A et al., 2017 : Long-Term Exposure to Road Traffic Noise and Nitrogen Dioxide and Risk of Heart Failure: A Cohort Study. Environ Health Perspect, 125(9), https://doi.org/10.1289/EHP1272

Stone V, Miller MR, Clift MJ et al., 2017 : Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ Health Perspect. 125(10): 106002. DOI : 10.1289/EHP424.

Strak M, Janssen N, Beelen R et al., 2017 : Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ Int, 108, p. 228‑236.

Yin P, Chen R, Wang L et al., Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities. Environ Health Perspect,125(11), https://doi.org/10.1289/EHP1849

Pour citer ce document

Référence électronique : Yvon Le Moullec « Articles sélectionnés pour vous », Pollution atmosphérique [En ligne], N°236, mis à jour le : 27/02/2018, URL : http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=6444

Auteur(s)

Yvon Le Moullec